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The self-assembled domain patterns of modulated systems are characteristic of a wide variety of chemical
and physical systems, and are the result of competing interactions. From a technological point of view, there is
considerable interest in these domain patterns, as they form suitable templates for the fabrication of nanostruc-
tures. We have analyzed the domains and instabilities that form in modulated systems, and show that a large
variety of patterns—based on long-lived metastable or glassy states—may be formed as a compromise between
the required equilibrium modulation period and the strain present in the system. The strain results from
topologically constrained trajectories in phase space, that effectively preclude the equilibrium configuration.
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I. INTRODUCTION

The kinetics of first-order phase transitions are character-
ized by a high degree of universality, such that a large variety
of materials systems display the same kinds of structural mo-
tifs and dynamical ordering mechanisms, albeit on very dif-
ferent length and time scales �1�. This is irrespective of the
underlying microscopic interactions responsible for the or-
dering, which indeed may be very different. Universal fea-
tures are particularly striking in modulated systems, which
are characterized by effective short-range attractive and
long-range repulsive interactions �LRRI� �2,3�. Here, the in-
teractions conspire to produce patterns based on lamellar
“stripe” and circular “bubble” motifs in two dimensions, and
spheres, tubes, and sheets in three dimensions. Examples of
systems characterized by modulated phases abound in na-
ture, and include prototypical examples such as magnetic
garnet films �4–16�, ferromagnetic surface layers �17�, ferro-
and dielectric fluids �18–20�, ferroelectrics �21,22�, Lang-
muir monolayers �23–28�, block-copolymer systems �29,30�,
liquid crystal systems �31–34�, charged colloidal suspensions
�35–37�, lipids and corresponding membranes and vesicles
�38–42�, type I superconductors �43–45�, steady-state
reaction-diffusion �Turing� patterns �46�, Swift-Hohenberg
fluid systems �47–49�, surface science systems �50,51�, and
the primate visual cortex �52�.

Understanding the time evolution of modulated systems
has been a problem of long lasting interest and importance.
Recently, there has been a resurgence of interest in this issue,
brought about by the advent of nanotechnology �53,54�. It
has become clear that future molecular electronic, biomedi-
cal, and photonic systems will require the self-assembly of
the associated device elements into a functional unit. One
way to achieve this is to make use of the patterns that are
produced by modulated systems, which can act as litho-
graphic templates. In particular, spectacular long-range or-
dering on suitable length scales has been achieved with soft-
condensed matter systems such as block copolymers, and
related surface systems �29,30,55,56�. To date, the current
patterns for templates are for the most part based on stripes
and bubbles. Here, we show by means of simulations of a
standard phase field model with Langevin dynamics �57–63�

that a very much larger set of patterns may be produced.
Most of these patterns are the result of a complicated mix of
ordering mechanisms and instabilities that will require con-
siderably more theoretical and experimental study before a
detailed understanding is achieved. However, a subset of
these patterns has already been found experimentally, in the
context of ferrimagnetic garnet films as those studied by
Molho and co-workers �10,11� and Seul and Wolfe �15,16�, a
fact that gives great confidence in the validity of the model.
Ultimately, it is hoped that many of the patterns will be iden-
tified experimentally, and find their application as nanolitho-
graphic templates, thereby enriching the choice of patterns
that are in current use.

In terms of the physics, the patterns discussed here are
formed by taking the system through its complex free energy
landscape, by means of successive quench trajectories inside
the coexistence region of the phase diagram. The trajectories
are chosen in such a way that the topological constraints of
the system produce strained patterns, that need not evolve to
the global free energy minimum of the system. These topo-
logical constraints arise from different aspects of the modu-
lated system, and include factors such as a very high free
energy barrier for the nucleation of stripes, the high bending
stiffness of stripes, packing constraints imposed on the sys-
tem by means of its initially ordered structure, etc. These
factors conspire to make modulated systems very strongly
history dependent, so that the order in which the different
parameters are changed plays a crucial role in determining
the patterns produced.

A short outline of this paper is as follows. In the next
section, we discuss a minimal phase field model for modu-
lated systems, which is based on the phenomenology of fer-
rimagnetic garnet films, as well as details of the simulations.
Previously, this model has been extensively used to theoreti-
cally explore ordering and Ostwald ripening phenomena for
systems quenched into the “hexagonal” or bubble phase
�strictly speaking, a triangular lattice of cylindrical domains�
�57–63�. Section III is used for a theoretical review. Section
IV discusses some general features that we found for systems
under strain. Section V discusses stripes under temperature-
induced strain, including both compressive and dilational
strain. Section VI describes the stripe-bubble transition �and
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the lack of transition in the hard-wall regime�. Section VII
presents results for the hexagonal phase under strain.
Throughout these sections, we show that the model both re-
produces experimental patterns and predicts different pat-
terns. Section VIII is reserved for a summary. Finally, we
note that a brief summary of our main results has already
been presented elsewhere �63�.

II. MODEL AND SIMULATIONS

To generate the patterns in this work, we use an LRRI
appropriate for ferrimagnetic garnet films. Most experiments
performed on ferromagnetic films can be represented by a
dipolar ferromagnet with uniaxial anisotropy in the geometry
of a slab of finite thickness L and infinite extent in the plane.
Strongly uniaxial films are required to avoid closure domains
and branching in the wall structure. A standard phase field
model for this system is given in terms of the order param-
eter ��r ,�� at spatial position r and time �. Regions r where
��r��0 represent spins pointing in the “up” direction �per-
pendicular to the slab�, while regions with ��r��0 represent
spins pointing in the “down” direction. In our figures, re-
gions with positive �negative� ��r� are represented by a
white �black� shading, respectively. The free energy func-
tional F in dimensionless form �57,59� is

F���r,��� =� d2r�1

2
����2 + f��� − H��

+
�

2
� � d2r d2r���r�g��r − r�����r�� . �1�

In the first term, the ����2 gives the lowest-order approxi-
mation to the cost of creating a domain wall or interface,
f��� is the local free energy, and −H� is the linear coupling
of the order parameter to the externally applied magnetic
field H, oriented perpendicularly to the film. The local free
energy has the standard temperature dependence associated
with phase transitions: for temperature T greater than the
critical temperature Tc, the local free energy has a single-well
structure that represents the uniform phase; for T�Tc �cor-
responding to our simulations� f���=−1/2�2+1/4�4, such
that the minima associated with the resulting double-well
structure correspond to each of the two coexisting phases.
The double integral represents the LRRI, with the kernel
given by

g��r − r��� =
1

�r − r��
−

1

��r − r��2 + L2�1/2 , �2�

as is appropriate for a ferromagnetic thin film. In the limit of
very thin films, i.e., L→0, the kernel g��r−r���→L2 / �2�r
−r��3� becomes a purely repulsive dipolar potential. Such a
system would be truly two dimensional, and have character-
istics similar to an Ising model with dipolar interactions, as
previously investigated by Stoycheva and Singer �64,65�.
The relative strength of the LRRI is represented by the
temperature-dependent parameter �. Throughout our discus-
sions, we use � and T— somewhat loosely—as if the two
were interchangeable. This is because both play very similar

roles in regulating the characteristic length scales of the
modulated phase �experimentally, � depends on T, but in a
nontrivial, system-dependent way �15��. In our simulations,
high-temperature, “shallow” quenches are mimicked by �’s
close to the critical �c	0.385 �for L=10, in the determinis-
tic zero-noise case� �59�, while low-temperature, “deep”
quenches are mimicked by values of � that are much smaller
than �c.

The time evolution of the system is given by the Langevin
equation:

���r,��
��

= −
�− �2�n

2

�F
��

+ 
u��r,�� , �3�

where ��r ,�� represents the dimensionless thermal noise of
strength 	, which is subject to the standard fluctuation-
dissipation relation ���r ,����r� ,����= �−�2�n��r−r�����
−���. The noise strength 	 depends on the temperature and
other parameters of the free energy as given, for example, in
Eq. �9� in Ref. �59�. For a system with a nonconserved �con-
served� order parameter, n=0 �n=1�, respectively. In this
work, we are focusing on patterns for ferrimagnetic garnet
films, which corresponds to the n=0 case. This equation was
then discretized on grids with sizes ranging from 2562 to
5122, and numerically integrated using standard pseudospec-
tral methods with periodic boundary conditions �57–59�.

The initial patterns for the simulations consisted of highly
ordered stripe or bubble arrays, that were constructed with
their proper, equilibrium wavelength characteristic of the
given point of the phase diagram. These structures were then
further equilibrated, in order to produce the equilibrium pat-
terns. These were then used as initial conditions for the ex-
ploration of the patterns presented in this work, which were
produced by means of subsequent quenches in � and H.
Simulations were conducted both with and without noise; a
further discussion of the role of noise is presented in Sec. IV.

III. THEORETICAL REVIEW

Figure 1 shows a sketch of the mean field phase diagram
for the system as a function of the two parameters � and H.
The phase diagram is symmetric with respect to H, with
first-order transition lines separating the stripe, bubble, and

FIG. 1. Sketch of a phase diagram for a ferrimagnetic thin film.
The phase diagram is symmetric with respect to the magnetic field
H. First-order lines separate stripe, bubble, and homogeneous
phases. The bubble phase is a low-density triangular lattice. Typical
order parameter profiles illustrating the soft- and hard-wall regimes
are also shown.
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homogeneous phases. These phases are expected to meet at a
ferromagnetic critical temperature Tc. In reality, the LRRI
suppresses the fluctuations near Tc such that the onset of the
modulated patterns occurs at a temperature that is somewhat
lower than Tc �66�. For H=0, the stripe patterns are symmet-
ric, with zero net magnetization. Asymmetric patterns result
as H changes, since the stripes whose magnetization is par-
allel �antiparallel� to the field become wider �thinner�, re-
spectively. Above a critical value of H, there is a transition to
an “hexagonal” phase consisting of cylindrical domains �the
bubbles� arranged on a low-density triangular lattice. An im-
portant feature of the system is that at high � �or high T� the
order parameter profile is a small-amplitude sinusoidal with
a short period. This represents the so-called “soft-wall” re-
gime. At low � �or low T�, the order parameter profile re-
sembles that of a “square-well” profile with a long period,
which is the “hard-wall” regime.

Theoretical analyses of domain formation have been for-
mulated by many authors in the past �4–9,12,13�. In prin-
ciple, to obtain this equilibrium wavelength, one has to solve
an infinite set of coupled equations in Fourier space �59�,
although considerable insight may be obtained with the
single-mode approximation in the soft-wall regime or using a
square wave for the hard-wall regime. For instance, for the
soft-wall regime—described by the single-mode
approximation—the period d of the lamellar patterns scales
as dL1/3, while in the hard-wall regime dL1/2 �67�. The
pattern period decreases with increasing temperature, since
the LRRI predominate as the critical temperature point is
approached, favoring the formation of more and more do-
main walls.

To understand the patterns formed, it is important to ex-
amine the relevant fluctuations for each of the phases and the
ordering processes. In terms of the former, Garel and Doni-
ach �9� and Sornette �12,13� showed that for the stripe phase,
the effective elastic energy takes the form of a smectic-A free
energy:

F 	� d2r�1

2
B� �u

�x
�2

+
1

2
K� �2u

�y2�2� , �4�

where the variable u represents the deviation of a domain
wall from its equilibrium position �stripes are assumed to run
along the y direction�, and the compression modulus B and
the curvature modulus K depend on �, L, and the equilibrium
wave vector. This smectic free energy is anisotropic in its
elastic response: transverse undulation modes �governed by
the curvature term� are characterized by relatively low exci-
tation energies, while the longitudinal compression modes
require considerably higher energies. As a consequence,
bending of stripes is favored over compression. Even in this
case, magnetic stripes are characterized by a large bending
stiffness �12,15�, estimated to be about 103kTc. This result
is important, and accounts for the predominance of glassy
states observed for ferrimagnetic systems, both experimen-
tally �10,11,15,16� and in our simulations: except for tem-
peratures close to Tc, temperature fluctuations simply do not
play a role over most of the phase diagram. This implies that
smectic positional correlations can have a macroscopic range

in magnetic films at finite temperatures. For the bubble
phase, the simplest effective elastic free energy is a two-
dimensional isotropic energy �9�, with a compressibility
modulus and an isotropic shear modulus. The form of the
free energy allows for a Kosterlitz-Thouless melting transi-
tion �68�.

Analytical theories for melting in two dimensions predict
that the profusion of topological defects in these systems
destroys the long-range translational and orientational order.
For two-dimensional modulated systems, the relevant topo-
logical defects are dislocations and disclinations. In the
lamellar phase, disclinations of charge q are characterized by
a mismatch of 2
q in the orientation angle after a lattice
circuit. The characteristic disclinations are those with q
=1/2 �the tip of a stripe� and q=−1/2 �a branching point
with threefold rotation symmetry�. These disclinations can be
bound together in a dislocation, which is an extra row in an
otherwise perfectly lamellar phase. In hexagonal phases, dis-
clinations of charge q are characterized by a mismatch of
q
 /3 in the orientation angle after a lattice circuit �58,60�.
The most common disclinations are those with q=−1 �a five-
fold coordinated bubble� and q= +1 �a sevenfold coordinated
bubble�. A dislocation is a tightly bound pair of sevenfold
and fivefold disclinations separated by one lattice spacing.
Two-dimensional solids do not have long-range translational
order: they are characterized by long-range orientational or-
der and quasi-long-range translational order characterized by
an algebraic decay of the translational correlation function. A
second-order transition produced by the unbinding of dislo-
cations leads to a phase characterized by short-range transla-
tional order �i.e., the exponential decay of the correlation
function�, and quasi-long-range orientational order. This in-
termediate phase is a nematic �69,70� for the stripe phase,
and a hexatic �71–74� for the bubble phase. In particular,
theory �69,75� predicts that the unbinding of dislocations in
the hexagonal phase occurs at nonzero temperatures, while
for the stripe phase it only occurs at T=0. However, smectic
positional correlations have macroscopic range in magnetic
films at T�0, and the predicted exponential decay of posi-
tional correlations is very difficult to assess �15�. Finally,
another second-order transition produced by the unbinding of
disclinations leads to the isotropic liquid phase. Another im-
portant feature in modulated phases is the presence of amor-
phous or glass phases, with abundance of topological defects
�10,11,15,16�. These glassy phases fail to achieve long-range
ordering, but may exhibit ordering on an intermediate length
scale that goes beyond the first nearest-neighbor distance.

IV. ORDERED PATTERNS UNDER STRAIN

One of the goals of this work is to provide an understand-
ing of the evolution of the initial highly ordered equilibrium
patterns subject to temperature-induced or field-induced
strain. For a given film thickness, the final patterns depend
not only on � and H, but also on the initial configuration,
i.e., whether it is stripe, bubble, or other, ordered or disor-
dered, with the domains belonging to the majority or the
minority phase, etc. In addition, because of the presence of
topological constraints, modulated systems are strongly his-
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tory dependent, so that how a specific point in phase space is
reached is important. Many trajectories do not give the same
patterns when the quench is reversed, and changes in � and
H often do not commute. Initial and final values of � �or H�
in the system may be linked through either a “direct” quench
��i→� f�, or through “stepwise” quenches with intermediate
equilibration �i→�1→�2…→� f. This can lead to radically
different configurations because of how the strain in the sys-
tem is accommodated. Roughly, small strains like those pro-
duced by the stepwise trajectories allow for a better accom-
modation of strain, and this favors affine deformations. On
the other hand, large strains, like those produced by the di-
rect trajectories, pile up a considerable amount of strain on
the patterns, and immediate release of the excess strain is
achieved by the fragmentation of the domains or by the
nucleation of domains within domains. There are innumer-
able ways of adding strain to modulated systems. We report
primarily on cases when the system is either under compres-
sive �too many domains� or dilative �too few domains� strain.

The topological constraints in the system arise from a
variety of physical origins. For instance, there are very high
free energy barriers for the nucleation of pairs of Bloch
walls, a high bending stiffness for the stripes, packing con-
straints on the initial configurations—especially in the highly
ordered configurations, that because of their symmetry leave
“no room” for domains to escape, etc. As a result, the system
is often precluded from reaching its final equilibrium pattern,
and ends up in either a true metastable state or a kinetically
frozen glassy state, that appears to be robust against small
perturbations such as noise. There is therefore the expecta-
tion that experimentally these patterns may be stabilized, and
ultimately become useful as templates. It is important to note
that lack of noise does not necessarily imply zero tempera-
ture. For instance, for stripe patterns in ferrimagnetic films,
experiments �10,11,14–16�, and previous theoretical consid-
erations �12,13� show that outside of the small critical re-
gion, temperature fluctuations are irrelevant and that the only
role of temperature is to modulate the characteristic period.
In the hexagonal phase, temperature fluctuations would be
expected to modulate transitions to and from the hexatic
phases. However, in magnetic garnet films the coercive fric-
tion associated with microscopic roughness effectively pins
the bubbles, and thermal fluctuations are unimportant. Thus
it is a standard technique in bubble memory technology to

use an ac magnetic field superimposed on the dc field to
simulate thermal motion. This is, for instance, the technique
used by Seshadri and Westervelt �76,77� to study two-
dimensional defect motion and a continuous hexatic-to-
liquid melting transition as a function of bubble density. In
these experiments, the ac field produces a breathing motion
of the bubble whose radius undergoes a slight periodic ex-
pansion or contraction. This motion couples with substrate
roughness originating from microscopic, random disorder on
length scales shorter than the bubble radius. The net effect is
an apparent random motion of the bubble.

V. STRIPES UNDER TEMPERATURE-INDUCED STRAIN

To understand the action of strain on the quenched pat-
terns, consider a configuration of stripes at H=0. Let Llat be
the lateral dimensions of the film such that all the stripes are
perpendicular to that side of the film. Let di be the equilib-
rium stripe period and Ni be the number of lamellae in the
initial, perfect lamellar pattern, and let d� and N� be the
corresponding stripe equilibrium period and equilibrium
number at the final � after the quench. These must satisfy
Llat=Nidi=N�d�, in equilibrium. Immediately after the
quench, when the number of stripes is still the same, the
strain produced by the quench in � is �= �d�−di� /di. When �
is decreased, the equilibrium stripe period is larger and the
number of stripes smaller. Hence, immediately after the
quench, there is an excess number of stripes, and so the
system is under compressive strain with ��0. The reverse
situation is encountered if � is increased: after the quench,
the number of stripes is lower than what is required for equi-
librium, and the stripes are therefore under dilative, or exten-
sional strain with ��0.

A. Stripes under compressive strain: Dislocation ejection

Consider an initial pattern of symmetric stripes �H=0� at
high � �soft-wall regime with small period� quenched to a
low � �hard-wall regime with large period�. The system is
under compressive strain, which is released by means of dis-
location nucleation, dislocation climb, and stripe ejection
�10–12�, as shown in Fig. 2. The ejection of stripes allows
the pattern to accommodate the increase in the stripe period
induced by lowering �. In this process, the stripes shorten

FIG. 2. Period adaptation of symmetric stripes
under compressive strain by means of dislocation
nucleation, climb, and stripe ejection for the di-
rect quench �=0.34→0.08. Configurations are at
times �=100, 500, 900, 1300 �top panels, left to
right�, and �=1700, 2500, 2900, and 3300 �bot-
tom panels, left to right�, respectively. Rectangu-
lar lattice of size 5122.
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their length until they disappear rather than have their width
go to zero. Purely strain-induced forces are seen in the earlier
times, when dislocations are isolated. Dislocation interaction
forces play a role when more dislocations are nucleated. The
process of stripe ejection preserves the lamellar state during
the coarsening process. The large change in � applied to the
system in Fig. 2 allows for nucleation of several dislocations
in both phases. Eventually, the tips of these dislocations
separate incommensurate regions of different periods. This is
clearly seen at times �=2500, 2900, where two regions of
shorter period alternate with two regions having a larger pe-
riod. These simulations reproduce some of the experimental
observations by Seul and Wolfe �15,16� for symmetric stripes
�H=0�.

The dislocation ejection is facilitated by the Peach-
Koehler force �78�, which is a result from the strain-induced
curvature of the stripes surrounding the dislocations. In ad-
dition to this force, the elastic interactions between disloca-
tions are also important. If the dislocation lines are parallel to
the layers of the smectic phase, the interaction force may be
decomposed into its longitudinal component �i.e., oriented
along the direction of the dislocations� and a perpendicular
component �79�:

F� = b1 · b2
B

8�
��1/2

d�

d�
3/2 exp�−

d�
2

4�d�

� ,

F� = b1 · b2
B�

8�
��1/2

1

d�
3/2�1 −

d�
2

2�d�

�exp�−
d�

2

4�d�

� . �5�

Here, d� and d� are the parallel and perpendicular distances
between dislocations �see Fig. 3�; b1 and b2 are the Burger’s
vectors of the two dislocations; B is the elastic compression
modulus; and � is the penetration length ��=
K /B, with K
the smectic curvature elastic modulus in Eq. �4��. These
equations are valid for perpendicular separations consider-
ably larger than the dislocation core. When the dislocations
are on the same stripe line �d�=0�, the interaction becomes
negligible. Note that the longitudinal component is attractive
for dislocations with opposite Burger’s vector, and repulsive
when these are parallel. The sign of the perpendicular com-

ponent, on the other hand, depends on the relative positions
of the two dislocations. The longitudinal force is responsible
for dislocation climb, and adds to the strain-induced force
�proportional to B��. The perpendicular component provides
a mechanism for the clustering of dislocations, thereby lead-
ing to the formation of a domain wall or grain boundary.

Interesting patterns emerge for asymmetric �H�0� stripes
subject to a temperature quench. Here, in addition to the
Peach-Koehler force and the dislocation interaction, there is
an additional force which derives from the action of the mag-
netic field on the dislocation core. Qualitatively, this may be
understood as follows �12�. Let d+�d−� represent the width of
the stripes whose magnetization is parallel �antiparallel� to
the magnetic field. The curvature of the dislocation core is
2/d+�−�. If  denotes the surface tension of the wall, then
the Laplace pressure on the dislocation core is 2 /d+�−�. In
the presence of a magnetic field when d+ increases and d−
decreases, this implies a decreased Laplace pressure for “+”
dislocations and an increasing pressure for “−” dislocations.
In other words, the excluding force decreases with increasing
H for “+” dislocations thereby pulling them in, and facilitates
the ejection of the “−” dislocations �see, for instance, Fig. 9�.

For very small fields, the process of stripe ejection under
a temperature quench looks qualitatively similar to that for
the H=0 stripes. For slightly higher field, the phenomenol-
ogy changes. For instance, Fig. 4 shows period adaptation of
asymmetric stripes when � is decreased under a constant
field H=0.08. The normal process of stripe ejection has been
replaced by segment coarsening. This process is initially
triggered around �=1700, by the formation of two disloca-
tion pairs separated by a single stripe, that now thickens in
the region surrounded by the gaps left by the dislocations.
This is a highly correlated process, with the thickened region
of stripes inducing the pinching of neighboring stripes. Even-
tually, incommensurate domains of thick and thin stripes ap-
pear between times �=1800 and 2000. Thin domains disap-
pear by shortening their length. At �	2200, all segments
have achieved the same “period”: regions of perfectly paral-
lel segments are now separated from each other by either
bubbles or by arrays of segment heads, thereby forming
grain boundaries. Nearby segment regions may be viewed as
“terraces”; the segments of two neighboring terraces occupy
alternating positions, with bubbles mediating the re-
adjustment of the period.

B. Stripes under dilative strain: Transverse instabilities
and topological defects

We now consider stripes systems under dilational strain,
i.e., the patterns obtained when � is increased from a low to

FIG. 3. �Color online� Sketch of two dislocations with opposite
Burger’s vector, with the parallel and perpendicular distances be-
tween the dislocation cores shown.

FIG. 4. Ordering of an asymmetric stripe pattern under compres-
sive strain after a quench �=0.34→0.08 at constant field H=0.08.
Left to right panels show configurations at times �=1800, 2000,
2200, and 4000, respectively. Rectangular lattice of size 5122.
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a high value. In principle, to release the strain, N� needs to
increase through the nucleation of additional stripes in order
for the system to remain in the lamellar phase. However, the
large energetic barriers to the nucleation of pairs of Bloch
walls preclude this process. Instead, the excess dilative strain
is reduced by means of an undulation or buckling instability,
which arises from a competition between the elastic exten-
sional energy and the opposing elastic bending energy
�80,81�.

First, we consider the case of symmetric stripes. After a
threshold of dilative strain is reached, the stripes undergo a
senoidal undulation deformation, which involves the collec-
tive buckling of lamellae on macroscopic scales. Stabilized
configurations for different values of � are shown in Fig. 5.
The undulation pattern for �=0.10 becomes a stabilized
“deep” undulation pattern �involving higher harmonics� for
�=0.12. For higher values of dilative strain, strong nonlinear
behavior leads to the formation of chevron or zigzag pat-
terns. One such stabilized configuration is observed for �
=0.16. The curvature walls of the initial undulation give way
to the discontinuity walls of the chevron pattern, character-
ized by a slope discontinuity. Experimentally, it has been
observed that the transverse period of the chevron structure
undergoes adjustment via the expulsion of “metadisloca-
tions” through climb �15�. The simulations need systems
larger than the ones presented in this work to observe this
phenomenon.

After a second threshold of dilative strain, the chevron
pattern “melts” via nucleation of disclination dipoles that
originate in the tips of the patterns. For symmetric stripes, an
equal number of such pairs emerges for each of the phases.
The last panel of Fig. 5 shows a nearly frozen configuration
for �=0.18, with the time evolution shown in Fig. 6. The
early times ��=400 and 800� show the emerging dipoles,
which are aligned perpendicularly to the original lamellar

patterns and emerge at angles of 120° with respect to the
original walls of the chevron structure. This process of line
branching �or pincement in the liquid crystal literature� re-
lieves strain by adding additional lamellae. Interestingly, if a
dipole emerges at the tip of a discontinuity profile in a given
layer, the discontinuity profile in the nearest-neighbor layer
towards which the dipole is pointing does not nucleate a
disclination dipole but becomes smoothly curved, acting like
a “cap” to the disclination dipole in the first layer. The maxi-
mum number of dipoles occurs for 500���1500; at later
times many of these dipoles are actually re-absorbed. This
process creates arrays of disclination pairs separated by rela-
tively smooth stripes. These observations are in excellent
agreement with the experimental observations of Seul and
Wolfe �15,16�, except that the simulation results are charac-
terized by a higher density of disclination dipoles because of
their higher strains.

As for symmetric stripes, we have examined the asym-
metric case quenching successively from �=0.08→0.12
→0.14→0.16. For example, Fig. 7 shows the time evolution
for the quench �=0.14→0.16 �H=0.10�. The amplitude of
the initial undulation patterns increases with time, and even-
tually leads to the nucleation of disclination pairs in the ma-
jority phase. However, this process is different from the cor-
responding symmetric case process. There, the disclination
pairs grow out of the discontinuity of the chevron pattern.
For the asymmetric stripes, these discontinuities are never
observed: the undulation grooves in the minority black phase
become more “square,” with larger amplitudes, while others
become more triangular with a smaller amplitude. The net
result may be interpreted as the nucleation of disclination
pairs in the majority �in this case the white� phase, without
having really gone through the chevron structure, or the pin-
cement process. As time evolves, the low-amplitude triangu-
lar grooves become smoother, and flatten out while the black

FIG. 5. Final configurations for symmetric
stripe patterns under dilative strain by means of
stepwise quenches, starting from a configuration
at �=0.08 that was quenched successively to �
=0.10, 0.12, 0.16, and 0.18 �left to right panels�.
Rectangular lattice of size 5122.

FIG. 6. Time evolution of a symmetric chev-
ron pattern melting after a quench �=0.16
→0.18. Configurations for times �=400, 800,
1600, 5000 �top panels, left to right� and �
=9000, 19 000, 33 000, 47 000 �bottom panels,
left to right� are shown. Rectangular lattice of
size 5122.
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square profiles keep growing in amplitude �or alternatively,
the white disclination pairs keep growing in length�. The
minority �black� phase also nucleates disclination dipoles,
but these are much fewer than those in the majority �white�
phase. These disclination dipoles, however, do originate
through the line branching or pincement process. During the
entire processes, the magnetization stays constant.

VI. FIELD QUENCH FOR CONSTANT �: STRIPE-BUBBLE
TRANSITION AND FIELD-INDUCED STRAIN

Stripe-bubble transitions in ferrimagnetic films may be
induced by varying the H field. Starting from a symmetric
stripe pattern, and then uniformly increasing H, the width d+
of the stripes with magnetization parallel to the field in-
creases, while the antiparallel stripe width d− decreases. For
weak fields, the sum d++d− stays constant, and equal to the
initial stripe period. At higher fields, d− decreases slowly and
attains a limiting value, while d+ continues to increase and
diverges near complete saturation. As a consequence, the to-
tal period must also diverge in this limit. For higher field,
there are therefore two possible scenarios. First, to increase
the period with H, some of the d− stripes must disappear.
This can take place through the process of dislocation nucle-
ation and ejection �10–12�, as previously described for
temperature-induced strain �Sec. V A�. This process is not
reversible: once the stripes have been ejected, bringing the
field back to H=0 does not recover the initial pattern, since
the cost of nucleating Bloch wall pairs is simply too high. In
complete analogy with the case of temperature-induced
strain, when the field is brought back to zero, the patterns are
under dilative strain and undergo the undulation and chevron
instabilities, as well as the nucleation of disclination dipoles
if the strain is large enough.

As a second alternative, another deformation mode in-
volving inhomogeneous variations of the stripe thickness
may take place. These “peristaltic” modes give rise to the

necking instability. Theoretically, this may be understood
through a modification of the smectic-A free energy to in-
clude these modes �13�. The resulting effective free energy
then takes on the form of a lyotropic liquid crystal, with a
third elastic modulus. If the width of the minority stripes
falls below a certain threshold �4�, the stripe domains be-
come unstable with respect to variations in their thickness.
This appears as a pinching or strangling of the stripes, which
signals the onset of the stripe-to-bubble transition. It results
in the complete rupture of the stripes that collapse into
bubbles. This process is completely reversible: the fusion of
bubbles into stripes under a decreasing field is also known as
the “stripe-out” instability.

In our simulations, we have observed both of these strain
accommodation modes, albeit in different regimes. In the
high-� or “soft-wall” regime, the peristaltic modes preempt
the nucleation of dislocations, and the reversible stripe-
bubble transition is observed as shown in Fig. 8. For low
temperatures, the hard-wall profile of the domains precludes
both the peristaltic and stripe-out instabilities. Considering a
stripe pattern for H�0, if a dislocation is introduced into an
otherwise perfect stripe pattern, then the process of strain
accommodation by means of stripe ejection takes place as
illustrated in Fig. 9, and no transition to bubbles is observed.

Field quenches involving hard-wall triangular arrays of
bubbles do not change the fundamental geometry of the
quenched pattern, unless very large changes are involved.
For instance, as shown in Fig. 10, quenching the hexagonal

FIG. 7. Time evolution of an asymmetric chevron pattern at
constant field H=0.10 melting after a quench �=0.14→0.16. Con-
figurations for times �=0, 2500, 4500 �top panels�, 13 000, 25 000,
37 000 �bottom panels� are shown. Rectangular lattice of size 5122.

FIG. 8. Top panels: time evolution of the soft-wall ��=0.34�
“stripe-out” instability as H=0.20→0.0. Configurations at �=0,
200, 250, 300, 350, and 1000 are shown. Bottom panels: time evo-
lution for the reverse transition �H=0.0→0.2� at �=1000, 1200,
and 3000. Note the presence of the peristaltic modes. Square lattice
of size 2562.
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phase from H=0.15→0 just leads to an increase in the size
of the black bubbles, without any shape transformation. A
further decrease in the field to H=−0.15 results in an unex-
pected configuration, where the bubble domains form the
majority phase �the equilibrium configuration is the negative
of the first panel of Fig. 10—minority phase of white bubbles
on a black majority background�. Increasing the field still
further to H=−0.22 brings about a radical change, and ulti-
mately results in the formation of small white bubbles on a
perfect honeycomb lattice. Further increases in the field re-
sult in the uniformly saturated phase.

These changes are completely reversible, provided they
do not involve shape transformations. Thus increasing the
field again from H=−0.15 to 0.15 recovers all of the previ-
ous configurations. However, when shape changes have
taken place, new configurations result. Thus when the hon-
eycomb configuration is quenched from H=−0.22 to −0.15, a
frozen, disordered bubble phase is obtained. When the H=
−0.22 configuration is rapidly quenched to H=0.0 �i.e., omit-
ting the intermediate quench�, a configuration of “fat”
bubbles is obtained, that is similar to the very initial configu-
ration, except that the phases are now inverted! A further
quench to H=0.15 also produces a hexagonal phase of ma-
jority bubbles. From the symmetry of the quenches, if we
take this H=0.15 configuration, and successively apply H
=0.15→ +0.22→0.0→0.15, we would recover the very ini-
tial pattern shown in Fig. 10. We have checked that these
results are robust against small noise �82�.

VII. HEXAGONAL BUBBLE PATTERNS UNDER STRAIN

In this section, we discuss the behavior of the hexagonal
bubble patterns under dilative strain. In all cases, we start

from final, metastable, or frozen patterns at low temperatures
��=0.08�, obtained in the previous section through field
quenches, and then take the system to successively higher
values of �, at constant field H. Here, truly interesting pat-
terns emerge. Some simply represent temporal configurations
as part of the time evolution, while others emerge as long-
lived metastable or frozen patterns. We begin the presenta-
tion with a summary of the “final” patterns obtained from the
simulations in absence of noise, followed by a discussion of
how this “kinetic” map is altered by the presence of noise.
After this, a more detailed discussion of the time evolution of
some individual runs is presented. It is convenient to intro-
duce a shorthand notation to describe the different quenches
in this section. The notation S :12→15 will indicate a step-
wise quench from �=0.12 to �=0.15; D :08→34 will indi-
cate a direct quench from �=0.08 to �=0.34, etc.

Although we found a number of very interesting patterns
under dilative strain—especially when the initial configura-
tions themselves were nonequilibrium patterns, like bubbles
in the majority phase—we found that compressive strain did
not produce “unexpected” results: mainly the original
bubbles disappeared or coalesced to make room for the cor-
rect period of the equilibrium pattern. Here therefore we only
report the results pertaining to dilative strain.

Bubble patterns under dilative strain: A“kinetic” map
of the patterns

Figure 11 shows a kinetic map of the final patterns ob-
tained for initial bubble patterns and then subjected to dila-
tive strain by increasing �. The initial bubble patterns are
those obtained for �=0.08 and comprise equilibrium lattices,
where the domains belong to the minority phase �H=0.25
and H=0.15�, and strained lattices, where the domains be-

FIG. 9. Time evolution of a hard-wall stripe
pattern quenched from H=0.0→0.25 at constant
�. This figure illustrates again the dislocation
climb and ejection as the mechanism for period
adjustment. Configurations at time �=300, 2200,
4500, and 13 000 are shown. Rectangular lattice
of size 5122.

FIG. 10. Final configurations obtained after
stepwise quenches in H at constant �=0.08. Top
panels at H=0.15→0.0→−0.15→−0.22. Bot-
tom panel shows the reverse quenches H=−0.22
→0.0→0.15. Interestingly, the intermediate step
H=−0.22→−0.15 �not shown� produces a disor-
dered bubble lattice. Rectangular lattice of size
2562.
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long to the majority phase �H=0.0 and H=−0.15�. The latter
were obtained through field quenches as described in Sec.
VI. Results for the H=−0.22 case �a honeycomb lattice of
the minority phase� are not shown, since all the quenches
starting from this configuration end up in the equilibrium
hexagonal lattice �of white minority domains on a black
background�. In Fig. 11, the stepwise quenches are marked
with an S, while the direct quenches are marked with a D.
Stepwise trajectories generally indicate that a given configu-
ration is obtained from the immediately preceding one. This
is always the case when the latter is a well-ordered configu-
ration with a distinctive symmetry; however, if that is not the
case, the “initial” configuration for the stepwise trajectory is
taken to be the last ordered configuration. For instance, for
H=−0.15 each configuration at the left is the initial pattern

for the next configuration at the right until �=0.20; the con-
figurations for �=0.26 and 0.30 are relatively disordered and
therefore the configuration at �=0.20 is taken as the initial
one for all �=0.26, 0.30, and 0.34. These cases are specified
in the figure caption.

Roughly speaking, the patterns fall into four regimes,
based on the final value of �.

�i� Low temperature 0.08���0.165 regime. Domains of
the minority phase experience an elliptical instability, and
end up as ordered lattices of either “dumbbell” or rounded
segments. Domains in the equal or majority phase experi-
ence a higher-harmonic shape transition, and end up as “Y”
shapes with trigonal symmetry. As � increases, the center of
the Y domain becomes thinner, and the tips become more
rounded. In all cases, the patterns are independent of whether
the quench was stepwise or direct.

�ii� Low-intermediate temperature 0.165���0.220 re-
gime. The final configurations here depend very much on
whether the quench has been stepwise or direct. Domains of
the minority phase are wavy segments if the trajectory has
been stepwise, or form hexagonal bubble lattices if the
quench has been direct. Equal or majority phase domains,
under a larger dilative strain, acquire the Y shape in stepwise
trajectories, or form ring patterns under a direct quench. In
both cases the domains form a triangular lattice.

�iii� High-intermediate temperature 0.22���0.31 re-
gime. Configurations here all depend upon whether stepwise
or direct quenches have been involved. Domains in the mi-
nority phase for high fields �H=0.25� end in the equilibrium
hexagonal configuration. For all the other field values, there
is a wide variety of patterns, generally consisting of glassy
states of melted stripes, stripe segments, and bubbles, all in
various proportions. Some of these patterns seem to have
stabilized over time, while others �indicated by the gray
shading� are still evolving. This slow evolution is explained
by the fact that for this range of parameters there is a cross-
over between the regime where �generally nonequilibrium�
structures are completely frozen ��i� and �ii�� to the regime
where patterns quickly evolve to the equilibrium configura-
tion in �iv�.

�iv� High temperature 0.31���0.36 regime. Here, in
the high-�, soft-wall regime, domains have higher mobilities
and mostly reach their equilibrium configuration. It is inter-
esting that the points �� ,H�= �0.34, ±0.15� correspond to the
stripe-bubble coexistence region, and stepwise or direct
quench trajectories determine whether the final configuration
is a lamellar phase or a triangular lattice.

Now we consider how this kinetic map is modified by the
presence of temperature fluctuations, i.e., random noise. The
configurations with the domains in the minority phase seem
to be quite robust to the presence of small noise �82�. The
only exception for H=0.25 is that the bubble lattices in the
high temperature regime are not “perfect” but have some
topological defects. For H=0.15 two configurations are not
stable: the quench D :08→30, ends in a mixture of bubbles
and stripes, although the time evolution is very similar to that
for the zero-noise case; and the quench D :08→34, which
ends in an equilibrium stripe-bubble coexistence pattern. In
addition, in the quench D :08→15, the segments are disor-
dered.

FIG. 11. Final patterns as obtained by means of temperature-
induced dilative strain on initial triangular lattices at different val-
ues of H, with � increased from left-to-right in either a stepwise �S�
or direct �D� quench. All the configurations in the �D� quenches are
obtained througth a direct quench starting from the left-most �
=0.08 configuration. The �S� configurations are obtained from the
closest configuration to the left that presents an ordered array of
domains. This generally means the configuration immediately to the
left, except for the following exceptions: H=0.15 and H=−0.15, the
configurations for �=0.20 are the initial configurations for �
=0.26, 0.30, and 0.34; H=0.0, the configuration for �=0.26 is the
initial configuration for �=0.30 and 0.34. All configurations are
effectively frozen, except those marked in grey that are evolving
slowly. For ease of visualization, the configurations have been cut
to show only one-fourth of the simulation cell, of size 2562.
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The configurations with the domains in the majority phase
seem to be quite more sensitive to noise, which can be ex-
plained by the fact that these domains are subject to consid-
erably more strain than the domains in the minority phase. In
particular, the Y shape seems to be unstable to noise and
these configurations cannot be obtained from quenches from
�=0.08 to �=0.12 or �=0.15. If, however, one takes a lat-
tice of Y shapes as the initial lattice, some trajectories are
recovered. For H=0.0, these are S :15→20, S :26→30, and
S :26→34 �but not S :20→26�; for H=−0.15 these are
S :15→20, S :20→26, S :20→30. If the Y shapes cannot be
obtained from the the fat bubbles on the left, then what are
the shapes that can be obtained under the presence of noise?
In Fig. 12, we present results for domains in the majority
phase under dilative strain and noise. We find that stepwise
and direct trajectories give approximately the same results,
and therefore this figure only has two rows corresponding to
each value of the field. For H=0.0 the ring shape preempts
the Y shape obtained under zero noise; and the rings are

remarkably stable. For �=0.26, the rings slowly start to melt,
similar to what happens in the quench D :08→26 under zero
noise. Interestingly, for �=0.30 a new configuration is stabi-
lized under noise; �=0.34 is evolving towards the equilib-
rium stripe phase. For H=−0.15 the fat bubbles evolve by
initially undergoing the Y shape instability, but these lattices
are not stabilized; only a direct quench to �=0.20 produces
stable rings. Quenches to �=0.26 produce senoidal stripes,
and to �=0.30 and 0.34, the equilibrium stripe-bubble coex-
istence.

1. Bubble patterns under dilative strain: Time evolution

Having gained an overview of the final patterns that are
formed in the simulations, we briefly consider their time evo-
lution. In general, the stepwise quenches involve affine de-
formations, at least for lower �, while the direct quenches
lead to rapid fragmentation of the original domains, maybe
followed by their reconstitution in different shapes over a
longer period of time.

The top two rows in Fig. 13 show the time evolution of
domains undergoing a quench S :08→12 without noise. The
domains in the minority phase H=0.25, first row� undergo an
initial elliptical instability and they finally stabilize in
“dumbbell” shapes at approximately ��1800 �total running
time was �=15 000�. The domains in the majority phase
�H=0.0, second row� present harmonic shape distortions that
take the morphology through the “apple” shape at �=1800
and triangular fingering instability to a final configuration of
perfectly triangular symmetric Y shapes that stabilize at �
�4000 �total running time was �=20 000�. Interestingly, the
configurations for higher �’s stabilize in this pattern of per-
fectly triangular symmetric Y shapes earlier. For instance,
�=0.20 stabilizes at ��1000 while �=0.26 stabilizes at �
�100. The Y shape becomes unstable for higher values of �.
The third row shows a direct quench D :08→15 under noise.

FIG. 12. �Color online� Final patterns as obtained by means of
temperature-induced dilative strain on initial triangular lattices of
majority domains under random noise. Direct and stepwise trajec-
tories seem to produce the same final configurations. Black configu-
rations are effectively frozen while grey configurations are evolving
slowly. For ease of visualization, the configurations have been cut
to show only one-fourth of the simulation cell, of size 2562.

FIG. 13. Top two rows show the time evolu-
tion of domains undergoing a stepwise quench
�=0.08→0.12 without noise. First row: domains
in the minority phase �H=0.25� at times �=400,
700, 1000, and 1800. Second row: domains in the
majority phase �H=0.0� at times �=0, 1800,
2000, and 4000. The third row shows the time
evolution of majority domains �H=−0.15� under
a direct quench �=0.08→0.15 with noise. Times
shown are �=1400, 2150, 2900, and 4900. Rect-
angular lattice of size 2562.
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A lattice of Y domains is no longer stable, but the domains
initially undergo the triangular fingering instability, as can be
seen at times �=2150 and 2900.

Figure 14 shows a particularly interesting case of shape
instabilities undergone by the Y -shaped domains �under zero
noise� when subjected to further dilative strain in the quench
S :26→30 �H=0.0�. The Y shapes fatten at the tips, and be-
come thinner in the center, ultimately fragmenting there. The
deformed arms then reconnect forming a chevron pattern
�clearly visible at �=2200� with nucleation of disclination
pairs as shown at �=5500 and 6500. The configuration
evolves very slowly and eventually reaches the equilibrium
stripe pattern. The time evolution for a quench S :26→34
�not shown� is much faster; by �=2500 the system has
reached the perfect stripe phase. The intermediate stages in
the melting of the Y lattice depend on the final value of � but
are independent of the initial Y lattice �i.e., all the configu-
rations for H=0.0 and �=0.12 to �=0.26 give the same time
evolution when quenched to a higher �.�

Figures 15–19 show the time evolution following differ-
ent direct quenches without noise. Some of the intermediate
patterns are quite exotic and unanticipated, with many inter-
esting intermediate stages before the final pattern is reached.
For instance, Fig. 15 shows the formation of two bubble
lattices, following a quench from �=0.08 �first panel in Fig.
10� to �=0.20 �first row� and �=0.34 �second and third
rows�. The transformation here is initiated by the nucleation
of a sublattice of white rings surrounding the initial black
bubbles. Immediately after that, fragmentation of the black
background takes place. For the direct quench D :08→20,
this gives intermediate six-point starred shapes ��=30�
which rapidly break to form the bubble lattice. For D :08
→34, there is a tertiary nucleation of white domains ��
=30� whose growth eventually cuts up the black background
��=100�. At �=900 there is a curious configuration of ser-
pentine stripes alternating with rows of bubbles, before the
system reaches the equilibrium hexagonal bubble lattice.
Figure 16 shows the quench D :08→26, that gives undulat-

FIG. 14. Time evolution for a Y-shape lattice
of majority domains �H=0.0� for a dilative
quench �=0.26→0.30. Times shown are �=800,
1200, 1400, 2200 �first row� and �=5500, 6500,
16 000, and 26 000 �second row�. Rectangular
lattice of size 2562.

FIG. 15. Time evolution for two direct
quenches of initial minority bubbles at H=0.25.
Top row: direct quench �=0.08→0.20. Times
shown are �=10, 30, 40, 100. Bottom rows: di-
rect quench �=0.08→0.34. Times shown are �
=10, 30, 60, and 80 �second row� and �=100,
600, 900, and 1400 �third row�. Rectangular lat-
tice of size 2562.
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ing stripes lines alternating with undulating stripe segments.
Careful examination of the patterns reveals that the continu-
ous lines are either zigzag patterns of smaller amplitude or
more senoidal-like patterns of higher amplitude. These con-
tinuous lines are separated by rows of stripe segments that
“travel” in one direction in a row, and in the opposite direc-
tion in the next row. The structure does not change from �
=13 000 to �=29 000 but it is not clear if it is “frozen.”

The rings that form in the majority phase, either with or
without noise, appear very early in the time evolution ��
�100� by nucleation of a sublattice of white bubbles within
the original majority black bubbles; and remain stable �for
simulation times ��25 000�. For higher �, they tend to be-
come more hexagonal. Figure 17 shows the time evolution
for direct quenches at H=0.0 where the rings are no longer
stable, but appear as an early configuration in the time evo-
lution. The first row is a quench D :08→26, which shows
slow melting of the rings. The second and third rows show
the quench D :08→30, where the early-time rings evolve to

an intermediate configuration of alternating stripes and rows
of bubbles ��=200�. The stripes have a senoidal modulation
which in turn modulates the bubbles. Thus going up a col-
umn of bubbles, thick and thin bubbles alternate: thick
bubbles are flanked by convex modulations of the stripes,
while thin bubbles are flanked by concave modulations of the
surrounding stripes �they are “squeezed”�. From ��450 to
��1700 the system shows perfect stripes. However, they do
not have the equilibrium period and are under dilative strain;
the system then undergoes a senoidal instability as described
in Sec. V B, finally stabilizing in a chevron structure. An-
other trajectory that develops early-time hexagonal rings is
shown in Fig. 18, that shows a direct quench D :08→26 at
H=−0.15. We observe similar modes of evolution as those in
Fig. 17. In particular, the configuration at �=600 is similar to
that observed at �=200 in Fig. 17: undulating stripes sepa-
rate rows of bubbles. Within these rows, thick and thin
bubbles alternate, the thin bubbles being squeezed by the
flanking stripes. Between ��1100 and ��3700 the configu-

FIG. 16. Time evolution for the direct quench
�=0.08→0.26 at H=0.15. Times shown are �
=100, 3400, 4200, and 4600 �top row� and �
=7000, 11 000, 13 000, and 29 000 �bottom row�.
Rectangular lattice of size 2562.

FIG. 17. Time evolution for two direct
quenches of initial minority bubbles at H=0.0.
Top row: direct quench �=0.08→0.26. Times
shown are �=100, 4000, 12 000, and 32 000.
Bottom rows: direct quench �=0.08→0.30.
Times shown are �=10, 20, 30, and 100 �second
row� and �=200, 300, 500, and 3500 �third row�.
Rectangular lattice of size 2562.
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ration remains the same. After that, bubbles start to come
together in short stripes as shown for �=5300. For �
=38 000 �not shown� all but three bubbles have disappeared;
the configuration is expected to end in a senoidal pattern.
This time evolution is independent of whether the initial con-
figuration is that of fat bubbles at �=0.08, H=−0.15, or that
of rings obtained in D :08→20, H=−0.15 �see Fig. 11�. A
quench to �=0.34, however, strongly depends on the initial
configuration since the equilibrium configuration for �
=0.34 and H= ±0.15 is very close to the stripe-bubble coex-
istence. This was shown in Fig. 11, where the quench S :20
→34 �initial lattice of Y shapes� gave a perfect stripe lattice,
while a quench D :08→34 �initial lattice of fat bubbles� gave
a perfect triangular lattice. This dependence on the initial
configuration is further illustrated in Fig. 19, where the first
row shows the quench D :08→34 �initial lattice of fat
bubbles� while the second and third rows show a quench
D :20→34 �initial lattice of rings�. The quench D :08→34
ends in a perfect hexagonal lattice of bubbles that stabilizes

at ��2200 while the quench D :20→34 ends in a stripe
configuration �except for dislocations�. In presence of noise
all the configurations for �=0.34 and H= ±0.15 end in the
equilibrium stripe-bubble coexistence.

In summary, the time evolution of these quenched modu-
lated systems is characterized by strain-induced instabilities,
that give rise to complex morphology based on the nucle-
ation of opposite-phase bubbles inside domains, domain
fragmentation, the coexistence of serpentine stripes and
bubbles, etc. It may well be that these kinds of transient
patterns will prove to be useful experimentally. The key issue
here is the long-time stabilization of these patterns, which
may presumably be achieved by means of kinetic freezing.

2. Hexagonal bubble patterns under dilative strain:
More field quenches

For completeness, we also considered quenches of the
final configurations shown in Fig. 11, and subjected them to
further quenches in the magnetic field, while keeping the

FIG. 18. Time evolution for the direct quench
�=0.08→0.26 at H=−0.15. Times shown are �
=250, 500, 550, and 600 �top row� and �=1100,
5300, 6100, and 17 700 �bottom row�. Rectangu-
lar lattice of size 2562.

FIG. 19. Time evolution for two direct
quenches of domains at H=−0.15. Top row: di-
rect quench �=0.08→0.34. Times shown are �
=100, 500, 700, and 2200. Bottom rows: direct
quench �=0.20→0.34 �initial lattice of rings�.
Times shown are �=50, 100, 250, and 350 �top
row� and �=500, 2500, 3100, and 17 500 �bottom
row�. Rectangular lattice of size 2562.
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value of � fixed. The results fall into three basic regimes:
�i� High temperature 0.31���0.35 regime. Variations

in H lead to transitions between stripe and bubble patterns, as
previously discussed. Even when a very large change in the
field is applied, e.g., from H=0.25→−0.25, the equilibrium
lattice is obtained very fast, with intermediate stripe and
shape transitions of the type already discussed. Given the
soft-wall nature of this regime, this result is easily antici-
pated.

�ii� High-intermediate temperature 0.22���0.31 re-
gime. Since in this regime some of the final configurations
generally do not have a regular periodic geometry, involve
some measure of disorder, and/or are still evolving �since the
regime is a crossover between �i� and �ii��, we do not con-
sider these configurations.

�iii� Low and low-intermediate temperature 0.08��
�0.22 regimes. Starting from the ring shapes for initially
negative and zero H values, and then increasing the field in
steps of 0.10 or 0.15, we find that the ring shapes turn out to
be very robust persisting all the way to H=0.35. Patterns
based on Y -shaped domains are also robust, but less so than
the rings. They stay in the Y shape until H�0.25; at H
=0.25 they become fragmented into alternating dumbbells
and bubbles and finally at H=0.30 they become an equilib-
rium hexagonal bubble lattice. Finally, we consider the
straight segments of �=0.15 and the wavy segments of �
=0.20 at positive fields: when the field is brought to zero,
these end in straight and senoidal stripes, respectively. Add-
ing a negative field does not break the stripes because these
values of � produce a relative hard-wall profile and the
stripes become stable. An example of these quenches for �
=0.20 is presented in Fig. 20. An interesting contrast is pre-
sented on Fig. 11, where moving up and down the column
�i.e., looking at different values of the field� corresponding to
�=0.20 shows very different configurations.

Finally, the evolution of these patterns under field
quenches, including the Y -shaped lattices, are robust against
small amplitude noise, and follow the patterns described.

VIII. SUMMARY

In summary, we have explored—by means of large-scale
simulations—the complex morphology of modulated sys-
tems by means of a reliable phase field model. This model
faithfully reproduces the experimental and theoretical results

in previously explored regions of the phase space. However,
by tuning the strain in the system—by means of temperature
and field quenches—one is able to take the system into dif-
ferent metastable or glassy configurations, that to date have
largely been unexplored. These patterns are stabilized by the
large topological constraints present in the system, which
preclude the system from reaching its true equilibrium pat-
terns. As the system is quenched, there is clear evidence of
strain-induced instabilities that are strongly history depen-
dent. It is hoped that the patterns explored in our simulations
will ultimately be realized experimentally, and perhaps prove
to be technologically useful as nanoscale templates for appli-
cation purposes. In this regard, our simulations are probably
most true to ferromagnets which are characterized by very
high elastic modulii. It remains an open question that we aim
to explore in the future whether these patterns are robust for
other fluid and soft-condensed matter systems.
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